H800基础能力测试

news/2024/6/16 22:54:19

H800基础能力测试

  • 参考链接
  • A100、A800、H100、H800差异
  • H100详细规格
  • H100 TensorCore FP16 理论算力计算公式
  • 锁频
  • 安装依赖
  • pytorch FP16算力测试
  • cublas FP16算力测试
  • 运行cuda-samples

本文记录了H800基础测试步骤及测试结果

参考链接

  • NVIDIA H100 Tensor Core GPU Architecture
  • How to calculate the Tensor Core FP16 performance of H100?
  • NVIDIA H100 PCIe 80 GB
  • NVIDIA H800 Tensor Core GPU

A100、A800、H100、H800差异

在这里插入图片描述

H100详细规格

在这里插入图片描述

H100 TensorCore FP16 理论算力计算公式

  • 4096 FLOP/clk per SM.
  • The H100 PCIE has 114 SMs
  • 114 x 4096 = 466944 FLOP/clk
  • BoostClock:1620MHz
  • 114 x 4096 x1620M/1000/1000=756 TFLOPS
  • 当前的卡最大频率为1980–> 114 x 4096 x1980M/1000/1000=924 TFLOPS

锁频

nvidia-smi -q -d SUPPORTED_CLOCKS
nvidia-smi -lgc 1980,1980 
nvidia-smi --lock-memory-clocks-deferred=2619

安装依赖

pip3 install https://github.com/cupy/cupy/releases/download/v13.1.0/cupy_cuda12x-13.1.0-cp310-cp310-manylinux2014_x86_64.whl
pip3 install pycuda

pytorch FP16算力测试

tee torch_flops.py <<-'EOF'
import pycuda.autoinit
import pycuda.driver as cuda
import torch
import timedef benchmark_pytorch_fp16(M,N,K, num_runs):# 确保使用 GPU 并设置数据类型为半精度浮点数 (float16)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')dtype = torch.float16# 生成随机矩阵A = torch.randn((M, K), device=device, dtype=dtype)B = torch.randn((K, N), device=device, dtype=dtype)    # 预热 GPU,进行一次矩阵乘法C = torch.matmul(A, B)    # 记录开始时间start_time = time.time()    # 多次进行矩阵乘法,计算 FLOPSstart = cuda.Event()end = cuda.Event()start.record()    for _ in range(num_runs):C = torch.mm(A, B)    end.record()torch.cuda.synchronize()    elapsed_time = start.time_till(end) / num_runs    # 计算 GFLOPSnum_operations = 2 * M*N*Kgflops = num_operations / (elapsed_time * 1e-3) / 1e12    return elapsed_time, gflops# 记录结束时间end_time = time.time()    # 计算平均运行时间elapsed_time = (end_time - start_time) / num_runs    # 计算总的 FLOPstotal_flops = 2 * M*K*N    # 计算 GFLOPSgflops = total_flops / elapsed_time / 1e12    return elapsed_time, gflops
# 设置矩阵大小和运行次数
num_runs = 32
M=2048
N=2048
K=40960
for i in range(5):# 运行基准测试elapsed_time, gflops = benchmark_pytorch_fp16(M,N,K, num_runs)# 输出结果print(f"Num:{i} 矩阵乘法大小: {M}x{K}X{N} 平均运行时间: {elapsed_time:.6f} 秒 TFLOPS: {gflops:.2f}")time.sleep(0.1)
EOF
python3 torch_flops.py

输出(790/924=85%)

Num:0 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.441580 秒 TFLOPS: 778.11
Num:1 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.430380 秒 TFLOPS: 798.36
Num:2 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.430523 秒 TFLOPS: 798.09
Num:3 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.430742 秒 TFLOPS: 797.69
Num:4 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.430283 秒 TFLOPS: 798.54

cublas FP16算力测试

tee cublas_flops.py <<-'EOF'
import cupy as cp
import numpy as np
from cupy._core import _dtype
from cupy.cuda import cublas
from time import time
from ctypes import c_void_p, c_float, cast, pointer, byref
import pycuda.autoinit
import pycuda.driver as cudadef cublas_fp16_strided_batched_gemm(M,N,K, batch_size, num_runs):# 创建随机半精度矩阵并转换为 CuPy 数组cp.cuda.Device(0).use()A = cp.random.randn(batch_size, M, K).astype(cp.float16)B = cp.random.randn(batch_size, K, N).astype(cp.float16)C = cp.empty((batch_size, M, N), dtype=cp.float16)# 创建 cuBLAS 句柄handle = cublas.create()    # 标量 alpha 和 betaalpha = np.array(1, dtype=np.float16)beta = np.array(0, dtype=np.float16)    cublas.setMathMode(handle, cublas.CUBLAS_TENSOR_OP_MATH)algo = cublas.CUBLAS_GEMM_DEFAULT_TENSOR_OP    try:# Warm-up (预热)for j in range(1):cublas.gemmStridedBatchedEx(handle,cublas.CUBLAS_OP_N, cublas.CUBLAS_OP_N,M, N, K,alpha.ctypes.data, A.data.ptr,_dtype.to_cuda_dtype(A.dtype,True), M, M * K,B.data.ptr, _dtype.to_cuda_dtype(B.dtype,True), K, K * N,beta.ctypes.data, C.data.ptr, _dtype.to_cuda_dtype(C.dtype,True), M, M * N,batch_size,_dtype.to_cuda_dtype(C.dtype,True), algo)cp.cuda.Device(0).synchronize()    # 实际基准测试start = cuda.Event()end = cuda.Event()start.record()start_time = time()for _ in range(num_runs):cublas.gemmStridedBatchedEx(handle,cublas.CUBLAS_OP_N, cublas.CUBLAS_OP_N,M, N, K,alpha.ctypes.data, A.data.ptr,_dtype.to_cuda_dtype(A.dtype,True), M, M * K,B.data.ptr, _dtype.to_cuda_dtype(B.dtype,True), K, K * N,beta.ctypes.data, C.data.ptr, _dtype.to_cuda_dtype(C.dtype,True), M, M * N,batch_size,_dtype.to_cuda_dtype(C.dtype,True), algo)end.record()cp.cuda.Device(0).synchronize()end_time = time()    except cp.cuda.runtime.CUDARuntimeError as e:print(f"CUDA 运行时错误: {e}")cublas.destroy(handle)return None, None    elapsed_time = start.time_till(end) / num_runs    # 计算 GFLOPSnum_operations = 2 * M*N*K*batch_sizegflops = num_operations / (elapsed_time * 1e-3) / 1e12    return elapsed_time, gflops    elapsed_time = (end_time - start_time) / num_runsnum_ops = 2*M*K*N*batch_sizegflops = num_ops / elapsed_time / 1e12    cublas.destroy(handle)    return elapsed_time, gflops
num_runs = 32
M=2048
N=2048
K=40960
matrix_size = 1
for i in range(5):elapsed_time, gflops = cublas_fp16_strided_batched_gemm(M,N,K,matrix_size,num_runs)print(f"Num:{i} 矩阵乘法大小: {M}x{K}X{N} 平均运行时间: {elapsed_time:.6f} 秒 TFLOPS: {gflops:.2f}")
EOF
python3 cublas_flops.py

输出(817/924=88%)

Num:0 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.421070 秒 TFLOPS: 816.01
Num:1 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.420407 秒 TFLOPS: 817.30
Num:2 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.420305 秒 TFLOPS: 817.50
Num:3 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.420304 秒 TFLOPS: 817.50
Num:4 矩阵乘法大小: 2048x40960X2048 平均运行时间: 0.420554 秒 TFLOPS: 817.01

运行cuda-samples

git clone https://www.github.com/nvidia/cuda-samples
cd cuda-samples/Samples/1_Utilities/deviceQuery
make clean && make
./deviceQuery
cd ../bandwidthTest/
make clean && make
./bandwidthTest
cd ../../4_CUDA_Libraries/batchCUBLAS/
make clean && make
./batchCUBLAS -m8192 -n8192 -k8192 --device=0

输出

Device 0: "NVIDIA H800"CUDA Driver Version / Runtime Version          12.2 / 12.2CUDA Capability Major/Minor version number:    9.0Total amount of global memory:                 81008 MBytes (84942979072 bytes)(132) Multiprocessors, (128) CUDA Cores/MP:    16896 CUDA CoresGPU Max Clock rate:                            1980 MHz (1.98 GHz)Memory Clock rate:                             2619 MhzMemory Bus Width:                              5120-bitL2 Cache Size:                                 52428800 bytesMaximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layersMaximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layersTotal amount of constant memory:               65536 bytesTotal amount of shared memory per block:       49152 bytesTotal shared memory per multiprocessor:        233472 bytesTotal number of registers available per block: 65536Warp size:                                     32Maximum number of threads per multiprocessor:  2048Maximum number of threads per block:           1024Max dimension size of a thread block (x,y,z): (1024, 1024, 64)Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)Maximum memory pitch:                          2147483647 bytesTexture alignment:                             512 bytesConcurrent copy and kernel execution:          Yes with 3 copy engine(s)Run time limit on kernels:                     NoIntegrated GPU sharing Host Memory:            NoSupport host page-locked memory mapping:       YesAlignment requirement for Surfaces:            YesDevice has ECC support:                        EnabledDevice supports Unified Addressing (UVA):      YesDevice supports Managed Memory:                YesDevice supports Compute Preemption:            YesSupports Cooperative Kernel Launch:            YesSupports MultiDevice Co-op Kernel Launch:      YesDevice PCI Domain ID / Bus ID / location ID:   0 / 215 / 0Compute Mode:< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
-----------------------------------------------------------------------------------------------------[CUDA Bandwidth Test] - Starting...
Running on...Device 0: NVIDIA H800Quick ModeHost to Device Bandwidth, 1 Device(s)PINNED Memory TransfersTransfer Size (Bytes)        Bandwidth(GB/s)32000000                     55.2Device to Host Bandwidth, 1 Device(s)PINNED Memory TransfersTransfer Size (Bytes)        Bandwidth(GB/s)32000000                     55.3Device to Device Bandwidth, 1 Device(s)PINNED Memory TransfersTransfer Size (Bytes)        Bandwidth(GB/s)32000000                     2085.3Result = PASS-----------------------------------------------------------------------------------------------------==== Running single kernels ====Testing sgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbf800000, -1) beta= (0x40000000, 2)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.04317784 sec  GFLOPS=25464.7
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0x0000000000000000, 0) beta= (0x0000000000000000, 0)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.00023699 sec  GFLOPS=4.63952e+06
@@@@ dgemm test OK==== Running N=10 without streams ====Testing sgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbf800000, -1) beta= (0x00000000, 0)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.22819090 sec  GFLOPS=48183.9
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 11.56301594 sec  GFLOPS=950.887
@@@@ dgemm test OK==== Running N=10 with streams ====Testing sgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0x40000000, 2) beta= (0x40000000, 2)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.23047590 sec  GFLOPS=47706.1
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbff0000000000000, -1) beta= (0x0000000000000000, 0)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 11.38687706 sec  GFLOPS=965.595
@@@@ dgemm test OK==== Running N=10 batched ====Testing sgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0x3f800000, 1) beta= (0xbf800000, -1)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 0.21581888 sec  GFLOPS=50946
@@@@ sgemm test OK
Testing dgemm
#### args: ta=0 tb=0 m=8192 n=8192 k=8192  alpha = (0xbff0000000000000, -1) beta= (0x4000000000000000, 2)
#### args: lda=8192 ldb=8192 ldc=8192
^^^^ elapsed = 11.38980007 sec  GFLOPS=965.348
@@@@ dgemm test OKTest Summary
0 error(s)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.tangninghui.cn.cn/item-12957.htm

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈,一经查实,立即删除!

相关文章

海外私人IP和原生IP有什么区别,谁更有优势?

一、什么是海外私人IP&#xff1f;什么是原生IP&#xff1f; 1、海外私人IP&#xff1a; 海外私人IP是由专门的服务提供商提供的IP地址&#xff0c;这些IP地址通常与特定地理位置或国家相关联。这些IP地址独享私人而不用与其他用户共享。海外私人IP通常用于绕过地理限制&#…

交换机连接方式

一、级联方式 级联是将多个交换机或其他网络设备依次连接&#xff0c;形成一个层次结构&#xff0c;从而扩展网络的覆盖范围和端口数量。 在级联连接中&#xff0c;数据信号会从一个设备依次传递到下一个设备。每个设备都会接收并处理来自上级设备的数据&#xff0c;并将其转…

键盘盲打是练出来的

键盘盲打是练出来的&#xff0c;那该如何练习呢&#xff1f;很简单&#xff0c;看着屏幕提示跟着练。屏幕上哪里有提示呢&#xff1f;请看我的截屏&#xff1a; 截屏下方有8个带字母的方块按钮&#xff0c;这个就是提示&#xff0c;也就是我们常说的8个基准键位&#xff0c;我…

当代人工智能三教父——深度学习三巨头

文章目录 引言 人物介绍 突出贡献 专业名词解释 引言 今天下午闲来无事翻阅了一下csdn首页的头条文章——《27 岁天才创始人 Joel Hellermark 分享了自己和“AI 教父” Geoffery Hinton 的最新采访》 感觉挺有意思&#xff0c;就从头到尾的看了一遍&#xff0c;里面有很多…

【源码】区块链交易系统/区块链买卖系统/区块链交易所系统

区块链交易系统/区块链买卖系统/区块链交易所系统 k线死了&#xff0c;自行修复 区块链交易系统/区块链买卖系统/区块链交易所系统 - 吾爱资源网

外包干了3天,技术退步明显.......

先说一下自己的情况&#xff0c;大专生&#xff0c;18年通过校招进入杭州某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能测…